Թեմա՝ Երկու անհայտով երկու գծային հավասարումների համակարգերի լուծման գրաֆիկական եղանակը։
Դիցուք տրված է x և y անհայտներով գծային հավասարումների համակարգ՝
{a1x+b1y+c1=0 a2x+b2y+c2=0
(x;y) թվազույգը կոչվում է համակարգի լուծում, եթե այն բավարարում է համակարգի հավասարումներից յուրաքանչյուրին:
Առաջին աստիճանի գծային հավասարմանը բավարարում են նրա գրաֆիկի՝ ուղիղ գծի վրա գտնվող բոլոր (x;y) կետերը:
Հետևաբար, եթե մենք ուզում ենք, որ բավարարվեն համակարգի երկու գծային հավասարումները միաժամանակ, ուրեմն պետք է փնտրել այնպիսի (x;y) կետեր, որոնք միաժամանակ պատկանում են երկու ուղիղներից յուրաքանչյուրին:
Ուշադրություն
Այսպիսով, համակարգի լուծումները համակարգի հավասարումներով տրվող ուղիղների (գրաֆիկների) ընդհանուր կետերն են:
Օրինակ
1. Լուծենք հետևյալ համակարգը:
{x+2y−5=0, 2x+4y+3=0
x+2y−5=0 հավասարման գրաֆիկն ուղիղ գիծ է: Կառուցենք այդ ուղիղը:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
| x | 5 | 0 |
| y | 0 | 2,5 |
xОy հարթության վրա կառուցենք գտնված (5;0) և (0;2.5) կետերը և դրանցով տանենք l1 ուղիղը:
2x+4y+3=0 հավասարման գրաֆիկը ևս ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
| x | −1,5 | 2,5 |
| y | 0 | −2 |
xОy հարթության վրա կառուցենք գտնված (−1.5;0) և (2.5;−2) կետերը և դրանցով տանենք l2 ուղիղը:

l1 և l2 ուղիղները զուգահեռ են և չունեն ընդհանուր կետեր:
Պատասխան՝ համակարգը լուծում չունի:
Օրինակ
2. Լուծենք հետևյալ համակարգը:
{2x−y−5=0,2x+y−7=0
Համակարգի հավասարումները բերենք գծային ֆունկցիայի ընդհանուր տեսքին՝ y=2x−5 և y=−2x+7
y=2x−5 ֆունկցիայի գրաֆիկը ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
| x | 0 | 3 |
| y | −5 | 1 |
xОy հարթության վրա կառուցենք գտնված (0;−5) և (3;1) կետերը և դրանցով տանենք l1 ուղիղը:
y=−2x+7 ֆունկցիայի գրաֆիկը ուղիղ գիծ է:
Գտնենք այս հավասարմանը բավարարող երկու կետ՝
| x | 0 | 1 |
| y | 7 | 5 |
xОy հարթության վրա կառուցենք գտնված (0;7) և (1;5) կետերը և դրանցով տանենք l2 ուղիղը:

l1 և l2 ուղիղները հատվում են A կետում, որի կոորդինատները համակարգի միակ լուծումն են:
Պատասխան՝ (3;1)
Օրինակներում կիրառեցինք համակարգերի լուծման գրաֆիկական եղանակը:
Գրաֆիկական եղանակը հուսալի չէ, քանի որ միշտ չի հաջողվում ճշգրիտ գտնել հատման կետի կոորդինատները: Այդ պատճառով, խորհուրդ է տրվում գրաֆիկորեն գտնված կետը տեղադրել համակարգի հավասարումների մեջ և համոզվել, որ դրանք բավարարվում են:
Այսպիսով, գալիս ենք հետևյալ եզրակացություններին:Գծային հավասարումների համակարգը գրաֆիկական եղանակով լուծելու համար անհրաժեշտ է՝
- յուրաքանչյուր հավասարումը լուծել y-ի նկատմամբ,
- կոորդինատային հարթության վրա կառուցել ստացված հավասարումներին համապատասխանող ուղիղները:
ա Եթե ուղիղները հատվում են, ապա նրանց հատման կետի կոորդինատներից բաղկացած թվազույգը կլինի համակարգի միակ լուծումը:
բ Եթե ուղիղները զուգահեռ լինեն, ապա համակարգը լուծում չունի:
գ Եթե ուղիղները համընկնեն, ապա համակարգն ունի անթիվ բազմությամբ լուծումներ՝ այդ ուղղին պատկանող բոլոր կետերի կոորդինատների թվազույգերը:
1․ Որոշել ֆունկցիայի գրաֆիկի և կոորդինատային առանցքների հատման կետերի կոորդինատաները.
ա) y=2x-7=0
0y -x=0 y=-7
0x -y=0 x=3,5
0y- (0:7)
0x- (35:0)