Պարապմունք 46

Թեմա` Պարզագույն իռացիոնալ հավասարումների լուժումը:

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:

Դիտարկենք 

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:

Դիտարկենք √2x+1=3 իռացիոնալ հավասարումը:

Ըստ քառակուսի արմատի սահմանման, այն նշանակում է, որ 2x+1=32: Փաստորեն, քառակուսի բարձրացնելով, տրված իռացիոնալ հավասարումը բերեցինք 2x+1=9 գծային հավասարմանը:

Ուշադրություն

Քառակուսի բարձրացնելը իռացիոնալ հավասարումների լուծման հիմնական եղանակն է:

Դա բնական է, եթե պետք է ազատվել քառակուսի արմատի նշանից:

2x+1=9 հավասարումից ստանում ենք՝ x=4: Սա միաժամանակ  2х+1=9 գծային  և √2x+1=3  իռացիոնալ հավասարումների արմատն է:

Քառակուսի բարձրացնելու եղանակը տեխնիկապես բարդ չէ իրականացնել, սակայն երբեմն այն բերում է անցանկալի իրավիճակների:

Օրինակ

Դիտարկենք √2x−5=√4x−7 իռացիոնալ հավասարումը:

Երկու մասերը բարձրացնելով քառակուսի, ստանում ենք՝ (√2x−5)2=(√4x−7)2 2x−5=4x−7

Լուծելով ստացված 2x−4x=−7+5 հավասարումը, ստանում ենք x=1

Սակայն x=1, որը 2x−5=4x−7 գծային հավասարման արմատն է, չի բավարարում տրված իռացիոնալ հավասարմանը: Ինչո՞ւ: Իռացիոնալ հավասարման մեջ  փոխարեն տեղադրենք 1: Կստանանք՝ √−3=√−3

Հավասարումը բնականաբար չի բավարարվում, քանի որ հավասարության ձախ և աջ մասերը իմաստ չունեն։

Ստացել ենք ավելորդ արմատ: Այսպիսի իրավիճակներում ասում ենք, որ x=1 -ը թույլատրելի արժեք չէ, կամ չի պատկանում թույլատրելի արժեքների բազմությանը: Դուրս եկավ, որ այս դեպքում, իռացիոնալ հավասարումը արմատ չունի, մինչդեռ քառակուսի բարձրացնելուց ստացված գծային հավասարումը արմատ ուներ:

Պետք է այսպիսի ավելորդ արմատները ժամանակին հայտնաբերել և չընդգրկել լուծումների մեջ՝ դեն նետել: Դա արվում է ստուգման միջոցով: 

Իռացիոնալ հավասարումների համար, ստուգումը լուծման անհրաժեշտ փուլ է, որը օգնում է հայտնաբերել և դեն նետել ավելորդ արմատնելը: 

Ուշադրություն

Այսպիսով, իռացիոնալ հավասարումը լուծելու համար պետք է՝

1) այն բարձրացնել քառակուսի,

2) լուծել ստացված հավասարումը,

3) կատարել ստուգում՝ դեն նետելով ավելորդ արմատները,

4) գրել վերջնական պատասխանը:

Կիրառելով այս եզրակացությունը, դիտարկենք հետևյալ օրինակը:

Օրինակ

Լուծենք √5x−16=2 հավասարումը:

1) Երկու մասերը բարձրացնենք քառակուսի՝ (√5x−16)2=22

2) Լուծենք ստացված հավասարումը՝

5x−16=4 5x=20 x=4

3) Կատարենք ստուգում: √5x−16=2 հավասարման մեջ տեղադրենք x=4: Ստանում ենք՝ √4=2 ճիշտ հավասարությունը:

4) Պատասխան՝ √5x−16=2 հավասարման լուծումը x=4 -ն է:

Հարցեր և առաջադրանքներ։

1․Ո՞ր հավասարումներն են կոչվում իռացիոնալ։

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

2․ Ինչպե՞ս են լուծում պարզագույն իռացիոնալ հավասարումները։

1) այն բարձրացնել քառակուսի,

2) լուծել ստացված հավասարումը,

3) կատարել ստուգում՝ դեն նետելով ավելորդ արմատները,

4) գրել վերջնական պատասխանը:

3․ Լուծել հավասարումները։

Ա x=9

Բ x=0

Գ լուծում չունի

Դ 0,5

Ե 0,5

զ) -1


է) 44/3


ը) 48/5


թ) 7

4․ Լուծել հավասարումները։

ա) x=1/3a^2+1/3
բ) լուծում չունի
գ) x=2
դ) լուծում չունի
ե) x=8/5
զ) լուծում չունի

5․ Լուծել հավասարումները․

249.x=4
250.x=9
251.x=25
252.∅
253.x=0
254.x=81
255.x=64
256.∅
257.x=25
258.x=0
259.∅
260.x=25
261.x=6
262.x=20
263.x=6
264.x=6
265.∅
266.x=9
267.x=4,5
268.x=10
269.x=1
270.∅
271.x=3,3
272.x=1,3
273.x=6
274.∅
275.∅
276.x=7
277.∅
278.x=10
279.∅
280.x=0,75

Leave a comment