1. Ենթադրություն՝ Կարծում եմ, որ եթե սրվակների պարունակությունները միավորենք, կտեղավորվեն մեկ սրվակում առանց թափվելու։ Ավազի հատիկների արանքում կան դատարկ տարածություններ, որոնք կարող են «կլանել» որոշ քանակությամբ հեղուկ։
2. Փորձի արդյունքի նկարագրություն՝ Երբ ներկված ջուրը դանդաղ լցվեց ավազի վրա, այն սկսեց ներթափանցել ավազի հատիկների արանքներով՝ առանց սրվակից դուրս գալու։ Ջուրը աստիճանաբար իջավ և «նստեց» ավազի մեջ, և հեղուկը ամբողջությամբ տեղավորվեց սրվակում։
3. Ինչ տեղի ունեցավ ջրի հետ՝ տեղավորվե՞ց: Այո՛, ներկված ջուրը ամբողջությամբ տեղավորվեց ավազ պարունակող սրվակում։ Դա հնարավոր եղավ, քանի որ ջուրը լցվեց ավազի հատիկների միջև եղած դատարկ տարածություններում։
Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ:
Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:
Դիտարկենք
Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ:
Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:
Դիտարկենք √2x+1=3 իռացիոնալ հավասարումը:
Ըստ քառակուսի արմատի սահմանման, այն նշանակում է, որ 2x+1=32: Փաստորեն, քառակուսի բարձրացնելով, տրված իռացիոնալ հավասարումը բերեցինք 2x+1=9 գծային հավասարմանը:
Ուշադրություն
Քառակուսի բարձրացնելը իռացիոնալ հավասարումների լուծման հիմնական եղանակն է:
Դա բնական է, եթե պետք է ազատվել քառակուսի արմատի նշանից:
2x+1=9 հավասարումից ստանում ենք՝ x=4: Սա միաժամանակ 2х+1=9 գծային և √2x+1=3 իռացիոնալ հավասարումների արմատն է:
Քառակուսի բարձրացնելու եղանակը տեխնիկապես բարդ չէ իրականացնել, սակայն երբեմն այն բերում է անցանկալի իրավիճակների:
Օրինակ
Դիտարկենք √2x−5=√4x−7 իռացիոնալ հավասարումը:
Երկու մասերը բարձրացնելով քառակուսի, ստանում ենք՝ (√2x−5)2=(√4x−7)2 2x−5=4x−7
Լուծելով ստացված 2x−4x=−7+5 հավասարումը, ստանում ենք x=1
Սակայն x=1, որը 2x−5=4x−7 գծային հավասարման արմատն է, չի բավարարում տրված իռացիոնալ հավասարմանը: Ինչո՞ւ: Իռացիոնալ հավասարման մեջ փոխարեն տեղադրենք 1: Կստանանք՝ √−3=√−3
Հավասարումը բնականաբար չի բավարարվում, քանի որ հավասարության ձախ և աջ մասերը իմաստ չունեն։
Ստացել ենք ավելորդ արմատ: Այսպիսի իրավիճակներում ասում ենք, որ x=1 -ը թույլատրելի արժեք չէ, կամ չի պատկանում թույլատրելի արժեքների բազմությանը: Դուրս եկավ, որ այս դեպքում, իռացիոնալ հավասարումը արմատ չունի, մինչդեռ քառակուսի բարձրացնելուց ստացված գծային հավասարումը արմատ ուներ:
Պետք է այսպիսի ավելորդ արմատները ժամանակին հայտնաբերել և չընդգրկել լուծումների մեջ՝ դեն նետել: Դա արվում է ստուգման միջոցով:
Իռացիոնալ հավասարումների համար, ստուգումը լուծման անհրաժեշտ փուլ է, որը օգնում է հայտնաբերել և դեն նետել ավելորդ արմատնելը:
Ուշադրություն
Այսպիսով, իռացիոնալ հավասարումը լուծելու համար պետք է՝