պարապմունք 32

Թեմա՝ Թվային անհավասարությունների հատկությունները:

Իրական թվերի կանոնները

Իրական թվերը ենթարկվում են հետևյալ կանոններին:

1 -ին կանոն: Ցանկացած երկու a և b իրարից տարբեր իրական թվերից մեկը մյուսից մեծ է: Այսինքն, ցանկացած a և b իրական թվերի համար տեղի ունի հետևյալ առնչություններից միայն մեկը՝ a=b, a>b, a<b

Օրինակ՝ 10 և 15 թվերի համար ճիշտ է 10<15 անհավասարությունը, և սխալ են մյուս երկու առնչությունները՝ 10=15 և 10>15 

2 -րդ կանոն: Ցանկացած երկու a և b իրարից տարբեր իրական թվերի միջև կա երրորդ թիվը: Այսինքն`  եթե a<b, ապա գոյություն ունի այնպիսի c թիվ, որ տեղի ունի հետևյալ երկկողմանի անհավասարությունը՝ a<c<b

Օրինակ՝ 1.4 և 1.5 թվերի համար գոյություն ունի, օրինակ, 1.44 թիվը, այնպես, որ տեղի ունի հետևյալ երկկողմանի անհավասարությունը՝ 1.4<1.44<1.5 

3 -րդ կանոն: Ցանկացած երեք a, b և c իրական թվերի համար, եթե a<b և b<c, ապա a<c

Օրինակ՝ 10/11<1 և 1<6/5 անհավասարություններից բխում է 10/11<6/5 անհավասարությունը:

Թվի գումարումը և թվով բազմապատկումը 

1 -ին հատկություն: Եթե a>b, ապա a+c>b+c

Եթե անհավասարության երկու մասերին գումարել կամ հանել միևնույն թիվը, ապա անհավասարության նշանը չի փոխվի:

Օրինակ՝ 3<12 ճիշտ անհավասարության երկու մասերին գումարելով −2 թիվը, կստանանք ճիշտ անհավասարություն՝  1<10

2 -րդ հատկություն: Եթե a>b և k>0, ապա ak>bk

Եթե անհավասարության երկու մասերը բազմապատկել միևնույն դրական թվով, ապա անհավասարության նշանը չի փոխվի:

Օրինակ Գիտենք, որ 17,2<x<17,3: Դրտարկենք 2x -ը:

Կրկնակի անհավասարությունը դրական 2 թվով բազմապատկելիս ստացվում է միանուն անհավասարություն (նշանները չեն փոխվում):

17,2⋅2<x⋅2<17,3⋅2,     34,4<2x<34,6

3 -րդ հատկություն: Եթե a>b և k<0, ապա ak<bk

Եթե անհավասարության երկու մասերը բազմապատկել միևնույն բացասական թվով, ապա անհավասարության նշանը կփոխվի:

Օրինակ՝ Հայտնի է, որ 17,2<x<17,3: Դիտարկենք −2x-ը:

Կրկնակի անհավասարությունը բացասական −2 թվով բազմապատկելիս ստացվում է հականուն անհավասարություն (նշանները փոխվում են):

17,2⋅(−2)<x⋅(−2)<17,3⋅(−2),   −34,4>−2x>−34,6,   −34,6<−2x<−34,4

Առաջադրանքներ

1.Համեմատել

Ա <

Բ >

Գ =

Դ <

Ե <

Զ <

2. Երկու ճշմարիտ անհավասարությունների հիման վրա կատարել եզրակացություն.

Ա <

Բ <

Գ >

Դ >

Ե >

Զ <

Է <

Ը <

3.Նշել տրված թվերից մեկից մեծ և մյուսից փոքր թիվ: Պատասխանը գրել կրկնակի անհավասարության տեսքով:

Ա 3<4<5

Բ -25>-27>-29

Գ 2,50<2,55<2,60

Դ 2,4<2,402<2,404

Ե 3,710>3,715>3,720

Զ -0,501<0,600<0,601

4.Գրել անհավասարություն, որը ստացվում է տված անհավասարության ձախ և աջ մասերի թվերը փոխարինելով նրանց հակադարձներով:

Ա 1/6<1/3

Բ 1/7>1/10

Գ 1/2>1/4

Դ 1/11>1/12

Ե 1/13<1/12

Զ 1/15>1/26

5. Տրված ճշմարիտ անհավասարությունից ստանալ ճշմարիտ անհավասարություն,որում յուրաքանչյուր թիվը փոխարինված է իր հակադիրով:

Ա -3<0

Բ -5<-1

Գ 9>1

Դ 5>1

Ե -9<-2

Զ 0>-3

6. Տրված ճշմարիտ անհավասարությունից ստանալ նոր ճշմարիտ անհավասարություն` գումարելով նրա երկու մասերին միևնույն թիվը.

 ա)14<21  բ) 32> 27  գ) 45<78  դ) -55<88   ե) -5 > -15  զ) 64> -99

Ա 14+7<21+7

Բ 32+15>27+15

Գ 45+45<78+45

Դ -55+88<88+88

Ե -5+15>-15+15

Զ 64+16>-99+16

7. Տրված ճշմարիտ անհավասարությունից ստանալ նոր ճշմարիտ անհավասարություն` նրա երկու մասը բազմապատկելով միևնույն դրական թվով.

Ա 15*5<20*5

Բ 5*10>4*10

Գ -2.5*3<3.3

Դ 1,1*4<1,2*4

Ե 1,3*7>1,2*7

Զ -5*5<6*5

8. Բազմապատկել ճշմարիտ անհավասարության երկու մասը միևնույն բացասական թվով:

Ա -1>-2

Բ -5<-4,5

Գ -6.5>-6.9

Դ -1.1>-1.2

Ե -1.3<-1.2

Զ -5>-6

9. Համեմատել

Ա <

Բ <

Գ <

Դ <

Ե <

Զ >

Է <

Ը =

Թ >

Ժ <

Ի <

Լ <

Leave a comment